Exercise 7

Find the area of a triangle bounded by the y-axis, the line $f(x)=9-\frac{6}{7} x$, and the line perpendicular to $f(x)$ that passes through the origin.

Solution

Start by writing equations of the lines that are given. The equation for the y-axis is $x=0$, $y=9-\frac{6}{7} x$ is given, and the line perpendicular to $f(x)$ has the negative reciprocal slope (7/6) with an equation given by the point-slope formula.

$$
\begin{aligned}
y-0 & =\frac{7}{6}(x-0) \\
y & =\frac{7}{6} x
\end{aligned}
$$

Now graph all of them.

The area of the triangle is half the product of the base and height.

$$
A=\frac{1}{2} b h=\frac{1}{2}(9)\left(\frac{378}{85}\right)=\frac{1701}{85} .
$$

The point of intersection on the right is found by setting the two functions of x on the right equal to each other and solving for x.

$$
\begin{gathered}
\frac{7}{6} x=9-\frac{6}{7} x \\
\frac{7}{6} x+\frac{6}{7} x=9 \\
\frac{85}{42} x=9 \\
x=\frac{378}{85}
\end{gathered}
$$

Plug this value of x into either of the two functions to determine the corresponding y-value.

$$
y=\frac{7}{6}\left(\frac{378}{85}\right)=\frac{441}{85}
$$

This means the intersection point on the right is $\left(\frac{378}{85}, \frac{441}{85}\right)$. The point of intersection at the top is found similarly.

$$
\begin{gathered}
x=0 \quad \text { and } \quad y=9-\frac{6}{7} x \\
y=9-\frac{6}{7}(0)=9
\end{gathered}
$$

The top point of intersection is $(0,9)$.

